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Abstract

Background: Machine learning (ML) holds the promise of becoming an essential tool for utilising the increasing
amount of clinical data available for analysis and clinical decision support. However, the lack of trust in the models has
limited the acceptance of this technology in healthcare. This mistrust is often credited to the shortage of model
explainability and interpretability, where the relationship between the input and output of the models is unclear.
Improving trust requires the development of more transparent ML methods.

Methods: In this paper, we use the publicly available eICU database to construct a number of ML models before
examining their internal behaviour with SHapley Additive exPlanations (SHAP) values. Our four models predicted
hospital mortality in ICU patients using a selection of the same features used to calculate the APACHE IV score and
were based on random forest, logistic regression, naive Bayes, and adaptive boosting algorithms.

Results: The results showed the models had similar discriminative abilities and mostly agreed on feature importance
while calibration and impact of individual features differed considerably and did in multiple cases not correspond to
common medical theory.

Conclusions: We already know that ML models treat data differently depending on the underlying algorithm. Our
comparative analysis visualises implications of these differences and their importance in a healthcare setting. SHAP
value analysis is a promising method for incorporating explainability in model development and usage and might
yield better and more trustworthy ML models in the future.
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Background
With the increasing availability and use of digital aid in
health care, such as sensors and electronic health records,
patients generate large amounts of data that can be used
in treatment and analysis. Some of this information is not
necessarily informative on its own but can give insight
into complex medical problems when combined. Statisti-
cal modelling has long been one of the main approaches
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in medical research when studying relationships and their
significance regarding different variables. However, due to
data availability and better hardware, the use of artificial
intelligence (AI) andmachine learning (ML) has increased
rapidly within this field over the last few years, supple-
menting, and to a certain degree replacing, the traditional
statistical models [1].
Statistical modelling and ML can both be used for

inference and prediction but have somewhat differ-
ent approaches. Traditional statistical modelling should
utilise pre-analytical clinical assumptions regarding the
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underlying structure of the data, while ML models often
are purely ‘data-driven’ and are developed by general-
ising patterns within certain constraints specific to the
algorithms [2].
Predictions in standard statistical models are often

‘human-readable’ to a certain degree. The opposite is the
case with ML models, which are often compared to ‘black
boxes’ where the mapping between the input feature and
prediction is not clear. Not only for the end-user, but also
the developer. The importance of different features on a
prediction can for some ML models be explained using
coefficients, or by tracing or visualising the steps taken
by the algorithm. Still, this is not always sufficient for
obtaining a model that is easily understood by humans
for development and use. The complexity of a model
increases rapidly with an increasing number of features,
and explaining the impact of individual features is not
straightforward. Without understanding, the models can-
not be trusted to perform according to our expectations.
There is an implementation gap for ML in healthcare,
where a lack of trust in the model plays a vital part [3].
Models that are not trusted will not be used. The need for
explainable ML and models that can be easily understood
by humans is becoming increasingly apparent [4, 5].
A recently developed tool for making ML models more

intuitive is SHapley Additive exPlanations (SHAP) [6]
which are based on Shapley values [7]. Shapley values
are a solution concept from game theory that weighs
the contribution of each player and distributes the ‘pay-
out’ accordingly. An implementation of this game theory
provides weights or relations describing how big a role
different features play in determining the output of the
model. Some studies published over the last few years
have incorporated SHAP or similar tools as part of the
model development and performance evaluation [8–10].
This applies only to a small portion of published stud-
ies, and there is yet work to be done before explainability
become state-of-the-art.
ML models need to be evaluated thoroughly to find

their true performance regarding the intended purpose.
Many ML models are usually evaluated using only a few
performance metrics. This, in combination with the lack
of transparency, often leads to poor evaluation of certain
aspects of the model and model performance. A recent
systematic review of studies where ML is used for predict-
ing mortality based on ICU data [11] showed that papers
generally only focus on the discriminative capabilities of
models. Additionally, the papers rarely reported metrics
related to other evaluation methods, such as calibration,
i.e. how well the distribution of predicted probabilities
matches the expected distribution.Models should be eval-
uated based on the use-case they were developed for, and
the use of solely one metric would be highly insufficient

in most cases [12, 13]. Domain knowledge is an inte-
gral part of ML model explainability and trustworthiness,
and should be applied in all stages of the model develop-
ment and implementation. This is particularly important
in healthcare, where models should reflect the human
physiology. The models should be correct for the right
reasons, and medical experts are an essential part of this.
There are many potential uses for ML in healthcare,

with tasks ranging from cancer detection [14] to predict-
ing hospital readmission [15] or mortality [16]. Mortality
prediction for patients in the Intensive Care Unit (ICU)
can be regarded as a simple classification problem with
two possible outcomes: dead or alive at ICU, or hospital,
discharge. The model utilises variables such as age, height
and weight, vital values, lab values, and diagnoses, with
features ranging from highly granulated temporal data to
single values such as the mean of the first 6 hours of the
hospital stay or discrete variables like age or sex. There
are many potential uses of mortality predictions, both on
individual and group level, including stratifying and iden-
tifying patients, comparing and improving ICUs, helping
with clinical decision making, knowledge derivation, and
resource allocation [17, 18].
With the advent of personalised medicine, predictions

on the individual patient level are warranted. However,
models developed for groups are not directly applicable to
individuals, as the mortality prediction reflects the prob-
ability of survival or death in a group or cohort [19].
Similarly, it is not possible to take a model developed for a
specific patient group and use it in a different group [19].
Hence, the intended use of the model is crucial.
In this study, we want to investigate how individual fea-

tures impact predictions from different ML models to
learn how they compare to common medical theory, and
to each other. This is done by developing four hospi-
tal mortality prediction models from a publicly available
dataset using the same input features to highlight similari-
ties and differences between the models from an end-user
point of view using SHAP-values. Dataset-level perfor-
mance metrics are calculated for the different ML models
to assess the overall performance and compare it to the
well-known APACHE IV score as a baseline. The pur-
pose of the study is not to find the best model regarding
explainability, but to clarify aspects to be aware of when
developing and using ML models, and to explore why
the ability to explain ML models, and not just the model
output, is needed.

Methods
This section is divided in three parts: Input, Model and
Output, representing the principal components of an ML
model. The analysis is done with Python, and the code is
available online.
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Input
The dataset
The dataset used in this study is the freely available multi-
centre eICU Collaborative Research Database [20], which
contains information about patients admitted to criti-
cal care units in the US between 2014 and 2015. The
dataset includes over 200 000 ICU stays from more than
139 000 patients and holds information such as patient
demographics, lab values, information about diseases and
treatment, and vital values with a resolution of 5 min-
utes. A large part of the dataset is dedicated to the Acute
Physiology and Chronic Health Evaluation (APACHE)
IV severity-of-disease classification system [21], and the
dataset includes designated tables for the parameters used
to calculate this score.

Patient selection
The patients’ inclusion criteria are shown in Fig. 1, which
also includes the training and test set selection described
later. Patients withmultiple ICU stays are excluded, as well
as patients younger than 18 years. Patients with a stay of
fewer than 24 hours are excluded to weed out patients that
are in the ICU for a short stay before death or transfer-
ral. Patients without valid age, sex, patient id, discharge
status, body mass index (BMI), admission diagnosis, or
predicted hospital mortality (based on APACHE IV) are
also excluded. Outliers for height and weight are removed
manually, while values outside of five standard deviations
are removed for vital and lab values.

Feature selection
The selected features are the same as for calculating the
APACHE IV score, with some exceptions. Height and
weight are combined in one variable: BMI. Glasgow Coma
Scale (GCS) is used as a combined score for eyes, motor
and verbal. The features PaO2 and FiO2 are combined
into one feature: pfratio.
Feature extraction is simplified using the tables con-

taining the features used for calculating the APACHE IV
score.
The vital and lab values used are the ‘worst’ value for

each feature, i.e. the value furthest away from a reference
value in the first 24 hours in the ICU. Many of the patients
have stayed in the hospital prior to the ICU, and treatment
will also affect the values. The result will reflect treat-
ment and care given during the entire stay, and events can
occur after the first 24 hours that are not considered by
the models.

Train/test set
Most ML models are developed with the help of a train-
ing set and then validated on a test set to evaluate how the
model performs on previously unseen data. The train/test
split is also shown in Fig. 1. The training set comprises
75% of the patients, and the test set comprises the remain-

Fig. 1 Patient selection. Patient selection criteria and train/test
splitting of dataset. aLength of stay. bPatients with valid features: age,
sex, patient id, discharge status, BMI, predicted hospital mortality,
admission diagnosis

ing 25%. The share of deceased patients is the same in both
sets (10.2%). The same training set and test set are used
for all models.
The ML methods considered cannot handle missing

inputs. The missing numerical values are therefore filled
with the mean of the training set. Patient with missing
categorical variables are not included in the study.

Models
We construct four different ML models; Random Forest
(RF), Logistic Regression (LR), Adaptive Boost Classi-
fier (ADA), and Naive Bayes (NB). All models are from
the scikit-learn Python package [22]. RF and ADA are
both tree ensemble models. The models comprise multi-
ple decision trees that when combined give better results
than individual trees. Decision trees determine the out-
put by using a flowchart-like structure to impose a series
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of conditions on the input. The RF model comprises mul-
tiple trees trained in parallel on different subsets of data
before the final result is found by majority vote. The ADA
model uses the same dataset for each tree, but the trees
are trained sequentially instead of in parallel with trees
updated based on the previous tree’s mistakes. The result
is decided by a weighted majority vote. LR models resem-
ble linear regression, but the output variable is binary.
The NB classifier is based on Bayes Theorem and assumes
conditional independence between input features.
Several different pre-processing techniques are tested

to see if they affect the results significantly. This includes
scaling of the input features, removal of patients with
more than X number of missing values, and filling
the missing values with (APACHE IV) reference values
instead of mean values. Different ratios between deceased
and alive patients in the training set are also tested. The
models are trained byminimising the error with respect to
the area under the receiver operating characteristic curve
(AUC ROC/AUC/c-statistic).

Output
The hospital mortality prediction can be presented as
a probability, or solely as a binary outcome based on a
risk threshold or operation point. Probabilities facilitate
risk stratification of patients and allow a more nuanced
understanding than simple ‘alive’/‘deceased’ predictions.
However, a probability still lacks information useful for
clinical decision support.
The AUC is a popular metric for evaluating a model’s

discriminative abilities, i.e. how well the model separates
the classes. A perfect classifier will have an AUC of 1,
while a random classifier yields an AUC of 0.5. AUCs
for different models tested on the same dataset are often
directly compared to determine which one performs bet-
ter in terms of discrimination.
The AUC confidence intervals are found by bootstrap-

ping with 10 000 bootstrap samples, each of the size of
70% of the test set.
While AUC is used to evaluate the models’ discrimi-

native abilities, calibration curves are plotted to evaluate
the calibration. Calibration is the agreement between the
observed and predicted risk [23] and can be visualised
with calibration curves where the predicted probability (x-
axis) is plotted against the observed frequency (y-axis). A
model capturing the accurate risk estimation would have
the calibration curve y = x.

SHAP
Themethod for finding SHAP values differs depending on
the type of model. It is possible to find exact SHAP val-
ues for tree models and linear models, while estimations
are found for other types of models using a weighted local
linear regression. This model agnostic method for find-

ing SHAP values does not make any assumption about
the model and is, therefore, slower than other methods.
Because of the time and resources needed for this model
agnostic method are SHAP values often based on a small
subset of the data. The NB model is the only model that
requires the use of this model agnostic method. We used
1000 samples for the evaluation in this case. For calcu-
lating the SHAP values for the LR model, a correlation
between the features is assumed.
The SHAP values cannot be compared directly between

models due to scaling differences. Still, it is possible to
compare how different models weigh different input fea-
tures by considering the shape of the different plots.

Results
Area under the receiver operating curve
The receiver operating characteristic curves are plotted
in Fig. 2, and the AUCs are listed in Table 1. The RF
model has the highest AUC, followed by the ADA model,
APACHE IV, LR and NB. The ADA and APACHE IV
models have almost completely overlapping confidence
intervals. These two confidence intervals are also partly
overlapping with both RF and LR. The NB model is the
only model without any overlapping confidence intervals.

Calibration curves
The calibration curves are shown in Fig. 3. All calibration
curves lie below the line y = x apart from a small part of
the NBmodel calibration curve, i.e., the predicted mortal-
ity is higher than the actual mortality. Inspecting the curve
for the RF model, the mortality for the group of patients
with a predicted mortality of 60% is in reality 30%. This
means that the chances of survival are better than what
the model predicts.

SHAP summary plot
Figure 4 shows the feature importance for the models with
respect to the mortality-prediction task. The features are
listed top-down with decreasing importance. Only the top
25 features are listed, and categorical variables are split
into one bar per category. The sum of the contribution
from each category gives the total contribution before
the one hot encoding. The bar lengths show the average
impact of the individual features on the models’ output.
For the RF model, the GCS is the most important fea-
ture followed by vent1 and blood urea nitrogen (bun). All
models apart from ADA placeGCS as the most important
feature. Age is also listed as an important feature by all the
models, as well as vent and GCS.
A different presentation of the SHAP summary plots

can be seen in Fig. 5. The order of the features listed is the
same as in Fig. 4, and the x-axis shows the SHAP values for

1Whether a patient is ventilated at the time of the worst respiratory rate.
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Fig. 2 Receiver operating characteristics (ROC) curves. The true positive rate is plotted against the false positive rate for different risk thresholds. A
perfect classifier has an AUC of 1, while a random classifier will have an ROC curve along the line x = y and an AUC of 0.5

individual patients instead of the average absolute value.
The further away from the vertical line at x = 0, the larger
the impact on the output prediction. Values to the left are
contributing to increased chances of survival, while values
to the right are pushing the prediction towards increased
mortality. The colourful vertical lines are made of dots,
with one dot for each patient. The colour of a dot signifies
the feature value for that patient. A pink dot represents a
high value, while a blue dot represents a low value. The
gradients represent the values in between. These plots
visualise how different feature values contribute to either
survival or death, but the total contribution from each
feature is less prominent compared to the bar plots.

SHAP force plot
SHAP force plots show the contribution of a single feature
for one or several patients. Force plots for the patients in
the test set for the features temperature and white blood
count (WBC) are depicted in Figs. 6 and 7, respectively.
The feature value is listed along the x-axis and is equiv-
alent to the dot colour in Fig. 5. The y-axis shows the

Table 1 Area under the receiver operating characteristics curves

Model AUC [CIa]

RF 0.871 [0.865, 0.877]

ADA 0.863 [0.857, 0.869]

LR 0.855 [0.849, 0.862]

NB 0.816 [0.810, 0.823]

APACHE 0.860 [0.854, 0.867]

aConfidence interval

average feature contribution from patients with similar
feature values.
All features are examined for all models. The aforemen-

tioned features highlight differences between the models
and aspects to be aware of when developing and using ML
models.

SHAP individual force plots
Figures 8 and 9 show the individual force plots for two
patients (A and B) for the four different models; features
the models consider relevant for the prediction of indi-
vidual patients. The bold-faced number is the probability
prediction (model output value), while the base value is
the value that would be predicted if no inputs are given
to the model. The blue features to the right of the pre-
diction are the features pushing the prediction towards
survival, while the pink features to the left push the pre-
diction towards increased mortality. The length of the
coloured segments helps visualise the size of the impact
on the prediction. The longer the segment, the larger
the impact. The length of the segments should not be
compared between models.
Figure 8 shows the force plots for a patient (A) being

alive at hospital discharge, which is predicted by the ADA,
LR and APACHE IV model (prediction 0.39) if the risk
threshold is 0.5. The RF and NB models predict that the
patient dies. The models consider a low GCS score as the
most, or second-most, influential factor concerning mor-
tality. The RF, ADA and LR model also consider the fact
that the patient is ventilated at the time of the worst res-
piratory rate as an important factor for mortality. The
patient’s young age is the factor pushing the predictions
most towards survival. While the models agree with the
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Fig. 3 Calibration curves. Illustrate how well the predicted probabilities match the actual mortality

impact of several of the factors, they disagree with the
influence of temperature. This patient has a high tem-
perature of 40.6°C, which is considered the second most
prominent factor for survival by the LR and RF models.
The SHAP values for another patient (B) are shown in

Fig. 9. With a risk threshold of 0.5, all ML models, as
well as the APACHE IV model (prediction 0.54), predict
that this patient dies in the hospital, which is also the
case. Even though the models agree on the outcome, the
SHAP values vary between the models. The age and the
fact that the patient was not ventilated at the time of the
worst respiratory rate are factors that push the prediction
towards survival. After age, the LR model also considers
the low white blood count as a factor pushing the pre-
diction towards survival, followed by vent and GCS. The
opposite is the case with the ADA model, where the low
white blood count pushes the prediction towards mortal-
ity. A high bilirubin level is considered quite important by
all models and is the only factor deciding the NB model
outcome. The predictions given by the models are all
above the risk threshold of 0.5.

Discussion
Area under the receiver operating curve
The overlapping confidence intervals show that the ML
models have comparable discriminative abilities. The
AUCs of these models are comparable to other published
models [24, 25] and are therefore a good starting point for
interpreting how these types of models work.

Calibration curves
It is possible to calibrate the models during or after train-
ing. This is not done in this study in order to highlight

the differences between models with similar AUCs more
clearly. The calibration curve for the ADA model behaves
differently from the others. The reason for this is that
almost all predictions from the ADA model are proba-
bilities between 0.48 and 0.51. Still, the model is good at
discriminating between the two classes, and the AUC for
the ADA model is higher than for the better calibrated
APACHE IV.
The APACHE IV model is better calibrated than the

other models but does not have the best discriminative
abilities. The formula for calculating the APACHE IV
score is not publicly available and is therefore not included
in the rest of the comparisons.

SHAP summary plot
Figure 4 show that chronic diseases are generally consid-
ered less important for the prediction than the other types
of variables. Possible explanations for this are that chronic
diseases are not affecting mortality to a large extent (inde-
pendent of the model used), or due to a lack of samples
since chronic diseases are rare. It is important to be aware
that a feature that has a large impact on mortality in real
life may be considered unimportant by a model. Some
of the other binary variables are considered very impor-
tant by many models, such as vent, whether the patient
was intubated, and if the patient had elective surgery. The
admission diagnosis does not seem to be considered very
important by any of the models. The unit admit source is
also not considered very important unless the source is the
Operating room.
It is interesting to note how different models consider

different features most important. This is particularly evi-
dent with the high importance given to pCO2 by the NB
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Fig. 4 SHAP summary bar plots. Feature importance for the different ML models listed top-down. The longer the bar, the larger impact the feature
has on the output

model, which all other models consider significantly less
important.
Considering Fig. 5, the NB summary plot is more right-

heavy than the other models. Features contribute more
towards increased mortality than increased chances of
survival. The ADA summary plot looks different from the
other models because of more discrete values rather than
continuous, due to the mathematical fundamentals of the
model. The ADA model summary plot looks less discrete
if the number of decision trees used to build the model

increases. However, more trees do not necessarily lead to
improved performance.

SHAP force plot
Temperature is listed among the top twelve features for
all models as seen in Fig. 4. However, the impact of the
temperature on the predictions differs between the mod-
els, as seen in Fig. 6. The force plots for the RF, ADA
and LR models are divided into two distinct parts: A
low temperature pushes the prediction towards increased
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Fig. 5 SHAP summary plots. Feature importance for the different ML models listed top-down. Each dot represents the impact on the prediction
from a specific patient’s feature value. Dots to the left of the line x = 0 are considered by the model to decrease the chances of mortality, while the
dots to the right are considered to increase the chances

mortality, while a high temperature is associated with
higher chances of survival. The ‘switching point’ where the
impact changes from negative to positive is around 36°C.
The linear behaviour of the LR model predicts increas-
ing chances of survival with increasing temperature. The
lower the worse, and the higher the better. The linearity
gives a misleading relationship from a medical perspec-
tive, where too high temperatures also are deemed critical.

The NB model reflects this nonlinear association. Values
between about 35.5°C and 38°C are pushing the predic-
tion slightly towards survival, while values outside this
range push the prediction towards increased mortality.
The impact increases with the distance from this range.
Figure 7 depicts the force plots for WBC. All models,

except NB, have a ‘switching point’ for WBC between 10
and 15 1000/uL, where the impact of the WBC changes
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Fig. 6 SHAP force plot for temperature. The y-axis represents the average effect of the temperature values listed along the x-axis. The pink sections
are where the temperature pushes the prediction towards mortality while the blue sections are where the temperature pushes the prediction
toward survival

from contributing to survival to contributing to mortality.
The WBC ‘switching point’ for the NB model is between
15 and 20 1000/uL. We can again observe the linear
behaviour of the LR model, which does not correspond to
medical theory. The RF and ADA models, and to a very
small degree the NB model, do better reflect the negative
effects of a lowWBC.
The force plots for the other non-binary variables have

similar behaviour as for temperature and WBC, and the
force plots are in many cases divided into two distinct
parts: Either low values push the prediction towards mor-
tality, and higher values push it towards survival or vice

versa. The LR model has a linear behaviour, while the
shape of the RF, ADA, and NB plots varies depending
on the feature. Even with different force plot shapes for
the different models, the ‘switching points’ are often quite
similar. This suggests that the models can provide insight
into factors that have an impact on mortality.

SHAP individual force plots
Considering the individual force plot in Fig. 8, the positive
impact on survival corresponds to the force plots in Fig. 6.
The NB model paints a different picture of patient A. The
high temperature is here considered the most significant
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Fig. 7 SHAP force plot for white blood count (WBC). The y-axis represents the average effect of the WBC values listed along the x-axis. The pink
sections are where the WBC pushes the prediction towards mortality while the blue sections are where the WBC pushes the prediction toward
survival

feature for increased mortality, which is in alignment with
the common clinical sense, where high fever surely is not
a good sign.
Considering the force plots for patient B in Fig. 9, the

low wbc pushing the prediction towards survival for the
LR model and towards mortality for the ADA model is
consistent with the force plots in Fig. 7. The ML mod-
els agree on several of the factors pushing the prediction
for patient B towards mortality. The ADA model gives a
significantly lower probability than the other models, but
when considering that the majority of the ADA model
predictions lie in the interval [0.49-0.51], this prediction
is among one of the strongest ones indicating a negative
outcome.

The model outputs cannot be interpreted as probabili-
ties because of the poor model calibrations, nor can they
be compared betweenmodels. Individual force plots show
which features the models consider relevant for the pre-
diction of individual patients. However, even though we
can visualise which features the models consider impor-
tant for individual patients, the models are not developed
for individuals, and the prediction will only reflect the
average risk for patients with similar risk factors.
Combining the results, we can see that a better model in

terms of AUC does not implicate a more accurate model
in terms of medical theory and vice versa. A model can
be good at one aspect and still fall short on others. An
example is the NB model. The NB model has the worst
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Fig. 8 SHAP force plot for a selected patient (A). Features to the left of the model output value are pushing the prediction towards mortality while
features to the right push the prediction towards survival
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Fig. 9 SHAP force plot for a selected patient (B). Features to the left of the model output value are pushing the prediction towards mortality while
features to the right push the prediction towards survival
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AUC of the models developed, and as seen with patient
B in Fig. 9 does the model only consider bilirubin when
making a prediction. From a medical perspective, this is
too little information to say something meaningful about
the patient’s condition. Still, the NB model corresponds
better tomedical theory when it comes to the temperature
and WBC as both too high and too low values push the
prediction towards mortality.

Limitations/future work
When developing ML models, there are nearly end-
less choices and trade-offs regarding variables, type of
models, pre-processing techniques, and choice of hyper-
parameters to name a few. Changing some of these factors
may provide better models, but testing all combinations is
not a feasible solution. For this work, we wanted to have a
few, well-known robust models with similar performance
to study and compare their transformation of inputs to
prediction. For future work, we plan to also investigate
deeper models with high AUCs.
This study shows differences between what the ML

models consider important factors for mortality com-
pared to medical theory. The reason behind these dif-
ferences is a combination of several factors such as the
underlying algorithm, choice of feature values, and pre-
processing techniques. While the analysis of these aspects
can provide valuable knowledge, this is outside the scope
of this project.
The different performance metrics and visual represen-

tations of the data were limited to the ones considered
most suitable. The SHAP Python library provides more
visualisation possibilities, such as dependence plots to
show global interpretability, which could be relevant for
further analyses.
For a more complete comparison with already estab-

lished models can APACHE II [26] or SAPS II or III
[27–29] can be suitable alternatives since the formulas for
calculating the scores are publicly available.

Conclusions
The four differentMLmodels developed in this study have
similar discriminative abilities. However, further exami-
nation show that these models behave quite differently.
While the calibration of the models illustrate that the
predictions cannot be translated directly to probabilities,
SHAP values show how the different models interpret
different features.
Explainable ML models allow us to compare mod-

els differently than by using performance metrics like
AUC alone. They also highlight important considerations
for development and use that are otherwise frequently
ignored. The SHAP plots enable visualisation of the con-
tribution the individual features have on the prediction,
and how the feature values push the prediction towards

survival or death. Models using the same set of features
can interpret the impact of these features differently and
still have comparable performance, as seen in this study.
It is important to remember that the SHAP values do

not imply causality; they merely give an insight into how
themodels consider various input, with respect to the out-
put. While it is tempting to conclude that a variable is
important for mortality since it has a high effect on the
prediction, it is not necessarily the case. Furthermore, a
seemingly good model does not necessarily correspond
with a medically sound understanding. This study high-
lights this importance. No model is perfect, and acknowl-
edging the limitations is an important part of development
and implementation.
This study contributes to the growing area of explain-

ableML by exploring the differences betweenmultipleML
models trained and tested on the same datasets. Black-
box models are an enormous challenge within many fields
where ML is both needed and utilised, and it is impor-
tant to highlight challenges and limitation so that models
can be used correctly and in the right setting. Understand-
ing of how models work is also important for trust, which
in healthcare ensure clinicians, patients and their families
that the right decision is made.
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